Preparing for Robotics

Preparing for Robotics
Students at DC's Whittier Educational Campus with ReSET Volunteer Peter Mehrevari

Wednesday, April 11, 2012

Now That’s Using Your Cerebral Cortex!

Figure 1: ReSET students on a science cruise field trip about to violate rule number 1: never eat your science experiment!
ReSET volunteers are passionate about science, and they’ll go to great lengths to communicate that passion to their students. These scientists-in-the-classroom employ some unique and truly innovative methods of engaging children in their STEM field of expertise:
Philip Posner, who has a Ph.D. in Medical Physiology, shows his students various videos of a functioning heart and blood flow to complement what they are learning in Biology. The children then collect data on their own heart rate during rest, exercise and recovery. Their homework is to repeat the data collection at home with parents and siblings. At their next class they compare the results, and discuss how gender, age, size, and time of day can affect the results.
Chemical Engineer, Sonya Mazumdar and her US Patent and Trademark Office Team, provide the children in her class with different types of toy cars with solar panels. Using various factors, she has the cars race each other to see which will go the fastest when placed against the sunlight—each car directed to equal amounts of sunlight. Sonya was amused when her children asked her if she “raced and tested cars all day long.”
Electrical Engineer, Bill Gill, uses a battery, a piezoelectric buzzer, a light bulb, two jumper wires, and a strip of household aluminum foil to make a simple “Burglar Alarm.” He connects the buzzer and bulb in series with the battery connect the in parallel with the buzzer using the jumper wires. He then has one of his students act as a thief and cut the foil. What happens? The light goes out and the buzzer sounds the alarm—“alerting the police.” Bill explains why it works: “The resistance of the buzzer is 10 times the resistance of the bulb, so the demo is really about resistance . . . with a little fun thrown in.” 
Roberta Goren, who has a degree in Microbiology, has her students plant and sprout their own seeds, and shows them how to identify the leaves and seeds from various trees. The children also learn how to make their own slides, which they study under a microscope.
Michael Fitzmaurice, who teaches Astronomy and Optics, uses a ping-pong ball to construct a model of the human eye. The class then discusses the parts of the eye, how we see, and 2D and 3D vision.
John Meagher, who teaches Environmental Science, has a small frog pond in his backyard. He brings tadpoles to the classroom in early spring and leaves them there for the duration of the program. One teacher he worked with at Annapolis Elementary School had the students draw the tadpole each week during art class. As the physical characteristics of the frog change over time, the students are amazed by the metamorphosis. Many of them want to keep the metamorphs, but John explains that the tadpoles have to return to their natural habitat to thrive.
See for more ideas. How do you innovate? Share YOUR STORY on the ReSET blog.

Tuesday, April 3, 2012

ReSET Volunteer Wayne Sukow's 5th Grade Program Report

Late in February I finished my 12th one-hour session at Key Elementary School, working with all the 5th grade students (~95) on Longitudinal Waves and Patterns of Sound Waves. The highlight was students seeing and in some cases making Chladni Patterns on square aluminum plates by stroking them with an old violin bow; students saw how the sand sprinkled on top of the plate(s) moved about into the zero displacement regions. The patterns vary and can be striking. Now my goal is to get enough plates, 4-5 so that it becomes a full-lab activity for all students. Next year we plan to get photos. Students also had opportunities to hear audio patterns using resonating tubes…just ordinary cardboard ones.
Earlier I did a session with four classes of 5th grade students (~100) at Key where students produced and drew the resulting patterns when light passes through a prism,  the reversal of color order when light is diffracted with a grating, an item which is ubiquitous in our everyday life. All students had the opportunity to see the effect of varying how tightly slits in the grating are squeezed together. That required the purchase of multiple 35 mm slide gratings with three different spacings between slits. There are enough left to do the same experiment next year. The data was the pattern—both order and spacing as measured from the straight ahead direction of the  resulting color patterns. I have some invoices for you. The frosting on the patterns with light experience included working with polarized light to see how stress patterns in materials such as plastic, are made visible by inserting the plastic between two sheets of Polaroid film.
 As is becoming the tradition at Key, following the temporal order of their science curriculum,  all 100  5th graders worked on geology activities including: learning how to make a mineral streak and recording the streak of a set of minerals, measuring the relative hardness of some minerals after having practiced how to do a scratch test and testing minerals to see if they responded to a magnetic field; I  need to invest in some old nickels, which are made of the metal by the same name for next year activities. Students will be surprised that they are attracted by magnetic too.  We also talked about the production of minerals in tectonic and non-tectonic processes, which drew upon studies they had already done in class. I need three  more pieces of lava with small (< 1mm) gemmy olivine crystals . To expand and follow my inclusive patterns in -------a science topic (light, sound, and soon geology) my intent is for student to learn that a considerable number of science experiments/investigations are is guided by looking for patterns that repeat…..the underlying intent is to accustom students to always look for patterns in repetitive events in everyday life to have  greater appreciation for  and to gain a better understanding of what causes them. Now the data is the pictures or the patterns seen…when they are in 12th grade and beyond they will be ready and accustomed to looking for patterns in data…data which is now numbers….although extreme high energy physics is back to observing pictorial patterns to understand the fundamental nature of matter and the universe. Then, some day one of them will integrate science and literature as they pen,  An  Ode to Patterns.